Health and Nutrition

October 28, 2014

Eating Wheat & Cow’s Milk Disrupt DNA Expression & Antioxidant Status

Filed under: Nutrition — Doc Joe @ 8:56 pm

Eating Wheat & Cheese Can Disrupt Your DNA & Antioxidants

Could two of the Western world’s most popular foods – wheat and cow’s dairy – be depleting you of your antioxidants and altering your DNA expression in a harmful way? 

A fascinating new study sheds much needed light on the topic of why a diet free of wheat gluten and the cow’s milk protein known as casein have commonly been reported to have such a wide range of health benefits, particularly when it comes to gastrointestinal distress and neurological disorders; Or, said oppositely, the study reveals why the centerpiece of the Western dietary pattern — a gluten and casein-rich diet — may participate in an extraordinarily wide range of health problems, many of which we have been documenting extensively on our open access database: gluten harms and casein harms. We also featured the neurotoxicity of gluten and casein in three previous articles you can review below for a more in depth perspective on their intrinsically harmful nature:

There has been no lack of controversy and debate in recent years as to why a wheat and gluten containing grain-free diet has been found anecdotally as well as in an increasing number of published case studies to have such remarkable benefit for those suffering with autism spectrum disorders and even schizophrenia.  Also, many have questioned why cow’s milk-based formula fed infants are at so much higher risk of hundreds of disorders versus breast-fed children? Could something yet to be fully identified within these omnipresent Western foods being harming those who consume them?

While the addictive and/or neurotoxic properties of casein and gluten peptides likely play a role, a new mechanism of action has recently been identified that may help to explain these concerning associations…

Wheat (Gluten) and Milk (Casein) Deplete Our Antioxidant System & Alter Our DNA Expression

Published in the Journal of Nutritional Biochemistry and titled, “Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences,” researchers discussed the emerging evidence pointing to systemic oxidative stress and inflammation as an underlying factor in neurological disorders such as autism spectrum disorder and schizophrenia. Since the antioxidant glutathione (GSH) is often found at significantly lower levels in those suffering from these disorders, and owing to the fact that GSH synthesis depends on the availability of the amino acid cysteine, the researchers pointed out the possible role of cysteine deficiency in these conditions.

The new study found that gluten and casein peptides released following the digestion of foods containing wheat and milk reduce cysteine uptake, “with subsequent effects on cellular redox and methylation status leading to global changes in DNA methylation and gene transcription,” i.e. they increase oxidative stress and alter gene expression in such a way that may lead to imbalances/disease. In an already weakened body, the addition of glutathione-depleting  and gene regulation altering-gluten/casein to the diet could further interfere with the cellular detoxification process necessary to maintain health.

Many environmental exposures, including heavy metals found in vaccines such as thimerosal (still found in the multi-dose flu shot) and aluminum, directly impact our glutathione system, significantly contributing to its depletion and subsequent ill affects on a wide range of bodily systems, most noticeably the neurological system.  Perhaps the addition of a cysteine-depleting gluten and casein heavy diet represents the ‘dietary straw that broke the camel’s back,’ adding to an already overburdened bodily toxic load caused by a tsunami of modern environmental exposures and biological incompatible synthetic ‘foods’ that we are presently all inundated with.

The researchers hypothesized that,

“Epigenetic programming, including CpG methylation and histone modifications, occurring during early postnatal development can influence the risk of disease in later life, and such programming may be modulated by nutritional factors such as milk and wheat, especially during the transition from a solely milk-based diet to one that includes other forms of nutrition.”

CpG methylation, a form of silencing of gene expression, and histone modifications, a mechanism of altering gene expression, are  forms of genetic inheritance that do not affect the primary nucleotide sequence of our DNA but, rather, influences the expression of our genes from the ‘outside in,’ as it were, by turning on the expression of some and turning off the expression of others. The result can be exactly the same as a ‘hard coded’ change in the DNA, with the critical difference that some of these ‘epigenetic’ changes can sometimes be reversed through dietary modification, lifestyle changes and/or removal of environmental exposures.

The study found that the digestion of casein (a major milk protein) and gliadin (a wheat-derived protein) releases proline-rich peptides with opioid activity which down-regulate cysteine uptake in cultured human neuronal and gastrointestinal (GI) epithelial cells via activation of opioid receptors. The subsequent decrease in cysteine uptake was associated “with changes in the intracellular antioxidant glutathione and the methyl donor S-adenosylmethionine.” S-adenosylmethionine is a primary mechanism through which the cells of our body silence the expression of genes in a process known as methylation.  When S-adenosylmethionine levels are low, it can interfere with methylation and this has been observed in many pathological states, including numerous cancers, e.g. ‘global hypomethylation’ is observed in cells whose cancer genes (oncogenes) have been turned on.

The experimental results, however, were complex. The peptides also induced increased methylation (gene silencing) in important gene regions associated with oxidative stress and the optimal functioning of the methylation system in general:

“Bovine and human casein-derived opioid peptides increased genome-wide DNA methylation in the transcription start site region with a potency order similar to their inhibition of cysteine uptake. Altered expression of genes involved in redox and methylation homeostasis was also observed.”

The study concluded:

“These results illustrate the potential of milk- and wheat-derived peptides to exert antioxidant and epigenetic changes that may be particularly important during the postnatal transition from placental to GI nutrition. Differences between peptides derived from human and bovine milk may contribute to developmental differences between breastfed and formula-fed infants. Restricted antioxidant capacity, caused by wheat- and milk-derived opioid peptides, may predispose susceptible individuals to inflammation and systemic oxidation, partly explaining the benefits of gluten-free or casein-free diets.”

These study results, while preliminary, are provocative. As we continue to unravel the role that foods play in modulating gene expression in the body – nutrigenomic considerations – we come to appreciate how profoundly foods are not only just ‘our medicine,’ but represent informational vectors, capable of ‘informing’ – literally, ‘putting form into’ – our bodies, down to the molecular level of affecting the expression of our genes and the proper conformational folding patterns of gene products, e.g. proteins. Eons of hard-wired biological practices like breast-feeding and the consumption of ancestral foods (which excluded grains and cow’s milk for at least 99% of our evolution as homo sapiens) has produced our present-day body. When we dramatically alter the types of foods we use as ‘energy’ and ‘material building blocks’ for our bodies, we are also profoundly altering the informational backbone of our genetic and epigenetic blueprint. It may be time to remove wheat/cow’s milk altogether, going back to the foods that have nourished our bodies and minds for millions of years before the advent of the agrarian revolution and animal husbandry. In fact, it is my belief that this may be required to return to optimal health, our birthright.

October 25, 2014

Role of gastrointestinal inflammations in the development and treatment of depression

Filed under: General Health,Nutrition — Doc Joe @ 3:16 pm

Orv Hetil. 2011 Sep 11;152(37):1477-85. doi: 10.1556/OH.2011.29166.

Role of gastrointestinal inflammations in the development and treatment of depression.

[Article in Hungarian]

Abstract

Recent studies have revealed that inflammation, among other factors, may be involved in the pathogenesis of depression. One line of studies has shown that depression is frequently associated with manifest gastrointestinal inflammations and autoimmune diseases as well as with cardiovascular diseases, neurodegenerative diseases, type 2-diabetes and also cancer, in which chronic low-grade inflammation is a significant contributing factor. Thus depression may be a neuropsychiatric manifestation of a chronic inflammatory syndrome. Another line of studies has shown that the primary cause of inflammation may be the dysfunction of the “gut-brain axis”. Although, this is a bidirectional mechanism, life style factors may primarily affect the symbiosis between host mucous membrane and the microbiota. Local inflammation through the release of cytokines, neuropeptides and eicosanoids may also influence the function of the brain and of other organs. Role of metabolic burst due to inflammation represents a new aspect in both pathophysiology and treatment of the depression. Finally, an increasing number of clinical studies have shown that treating gastrointestinal inflammations with probiotics, vitamin B, D and omega 3 fatty acids, through attenuating proinflammatory stimuli to brain, may also improve depression symptoms and quality of life. All these findings justify an assumption that treating gastrointestinal inflammations may improve the efficacy of the currently used treatment modalities of depression and related diseases. However, further studies are certainly needed to confirm these findings.

PMID:
21893478
[PubMed – indexed for MEDLINE]

 

Finally: Missing link between vitamin D, prostate cancer

Filed under: Cancer,Supplements,Vitamin D — Doc Joe @ 2:30 am

Featured Research

from universities, journals, and other organizations

Finally: Missing link between vitamin D, prostate cancer

Date:
October 22, 2014
Source:
University of Colorado Denver
Summary:
A new study offers compelling evidence that inflammation may be the link between vitamin D and prostate cancer. Specifically, the study shows that the gene GDF-15, known to be upregulated by vitamin D, is notably absent in samples of human prostate cancer driven by inflammation.
A University of Colorado Cancer Center study recently published in the journal Prostate offers compelling evidence that inflammation may be the link between Vitamin D and prostate cancer. Specifically, the study shows that the gene GDF-15, known to be upregulated by Vitamin D, is notably absent in samples of human prostate cancer driven by inflammation.

“When you take Vitamin D and put it on prostate cancer cells, it inhibits their growth. But it hasn’t been proven as an anti-cancer agent. We wanted to understand what genes Vitamin D is turning on or off in prostate cancer to offer new targets,” says James R. Lambert, PhD, investigator at the CU Cancer Center and associate research professor in the CU School of Medicine Department of Pathology.

Since demonstrating that Vitamin D upregulates the expression of GDF-15, Lambert and colleagues, including Scott Lucia, MD, wondered if this gene might be a mechanism through which Vitamin D works in prostate cancer. Initially it seemed as if the answer was no.

“We thought there might be high levels of GDF-15 in normal tissue and low levels in prostate cancer, but we found that in a large cohort of human prostate tissue samples, expression of GDF-15 did not track with either normal or cancerous prostate tissue,” Lambert says.

But then the team noticed an interesting pattern: GDF-15 was uniformly low in samples of prostate tissue that contained inflammation.

“Inflammation is thought to drive many cancers including prostate, gastric and colon. Therefore, GDF-15 may be a good thing in keeping prostate tissue healthy — it suppresses inflammation, which is a bad actor potentially driving prostate cancer,” Lambert says.

The study used a sophisticated computer algorithm to analyze immunohistochemical (IHC) data, a task that in previous studies had been done somewhat subjectively by pathologists. With this new technique, Lambert, Lucia and colleagues were able to quantify the expression of the GDF-15 protein and inflammatory cells by IHC staining on slides taken from these human prostate samples.

Additionally encouraging is that the gene GDF-15 was shown to suppress inflammation by inhibiting another target, NFkB. This target, NFkB, has been the focus of many previous studies in which it has been shown to promote inflammation and contribute to tumor formation and growth; however, researchers have previously been unable to drug NFkB to decrease its tumor-promoting behavior.

“There’s been a lot of work on inhibiting NFkB,” says Lambert. “Now from this starting point of Vitamin D in prostate cancer, we’ve come a long way toward understanding how we might use GDF-15 to target NFkB, which may have implications in cancer types far beyond prostate.”


Story Source:

The above story is based on materials provided by University of Colorado Denver. The original article was written by Garth Sundem. Note: Materials may be edited for content and length.


Journal Reference:

  1. James R. Lambert, Ramon J. Whitson, Kenneth A. Iczkowski, Francisco G. La Rosa, Maxwell L. Smith, R. Storey Wilson, Elizabeth E. Smith, Kathleen C. Torkko, Hamid H. Gari, M. Scott Lucia. Reduced expression of GDF-15 is associated with atrophic inflammatory lesions of the prostate. The Prostate, 2014; DOI: 10.1002/pros.22911


October 3, 2014

Magnesium Deficiency Symptoms and Diagnosis

Filed under: Diet,General Health,Nutrition — Doc Joe @ 2:47 pm

Powered by WordPress